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Abstract

A method of direct non-linear regression of the kinetic equation was proposed for a simultaneous calculation of the
activation energy, frequency factor, and reaction order from a single TG curve. The method of calculation was utilized for the
kinetic parameters calculation from both the simulated and experimental curves (graphite and soot oxidation, Mg(OH),
decomposition). The results were compared with the values obtained by traditional methods. A dependence of the calculated
parameters on random errors of the experimental data was studied. The method of non-linear regression appears to be the best
of the used methods from this point of view. It was proved that the proposed calculation method is as well applicable for the
kinetic parameters calculation of more overlapping processes. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The non-isothermal thermogravimetry (TG) with a
linear temperature growth is a method frequently used
to characterize materials from their thermal behavior
standpoint. In addition, it enables to determine appar-
ent kinetic parameters of heterogeneous reactions (the
reaction order n, the activation energy E, and the
frequency factor A).

Considerable attention is paid to the kinetic para-
meters calculation from TG curves. New calculation
methods are still being published [1-7]. A number of
papers are devoted to comparing these methods [7-9]
or to their critical assessment [10,11].

The present calculation methods are either based
on a single TG curve (‘“‘single curve” methods) or
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require several TG curves measured at various heat-
ing rates (“many curves’ methods, isoconversion
methods).

Though, a physical meaning of the kinetic para-
meters determined by ‘“‘single curve” methods is not
quite clear, these methods are able to describe a TG
curve generally well. Moreover, the dependence of the
calculated kinetic parameters on experimental condi-
tions may bring new knowledge about the correspond-
ing thermal process.

The “‘single curve” methods are based on a linear-
ization of the fundamental kinetic equation. They are
relatively satisfactory for simple processes where their
results are well comparable. However, if a TG curve
consists of two or more overlapping processes, the
““single curve’” methods usually fail. The reason of the
failure is the kinetic equation linearization which may
be performed in the curve section where only a single
process proceeds.
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Recent expansion and development of computers
make the iterative methods utilizing the direct non-
linear evaluation of TG curves possible. Paper [12]
showed a utilizability of the non-linear regression as a
method of determining the kinetic parameters of
heterogeneous reactions from TG curves, which sup-
ports the justifiability of this approach.

The present paper aims to prove possibilities of
determining all the kinetic parameters by means of the
direct non-linear regression (DNR) of the basic kinetic
equation and to propose a method of their calculation
from a single TG curve. Another aim is to verify the
assumption that the elimination of the kinetic equation
linearization maintains its additive feature and enables
to calculate the kinetic parameters for several over-
lapping processes.

2. Theoretical

Kinetic calculations from the thermogravimetric
data usually proceed from the basic kinetic equation

dm

G = K(T)g(m) m

where m is the actual substance mass, ¢ the time, and T
the absolute temperature.

Arrhenius equation is generally used for the depen-
dence of the rate constant k(7) on the absolute tem-
perature

k(T) = Ae 5/RT 2

where A is the frequency factor, E, the activation
energy, and R the molar gas constant.

The mass function g(m) is dependent on the
assumed reaction mechanism. Various forms of this
function have been published [13]. We used the form
analogous to the homogeneous reactions kinetics in
our calculations

glm) = m" 3)

where n is the reaction order.

This form is often applied for calculations of the
kinetic parameters of heterogeneous thermal pro-
cesses. It was used for solving, e.g. the oxidation
kinetics of rocket fuels [14], coal [8,15], char [16],
graphite [15,17,18], and/or diamond [18].

Inserting Eqgs. (2) and (3) in Eq. (1), we obtain the
kinetic equation in the following form:

— d7m — —E,/RT ,,n

P Ae m “4)
To calculate a theoretical TG curve, it is necessary to
know the form of the function m = f(¢, E, A, n). If the
time step is set small enough, the derivatives in Eq. (4)
may be replaced by differences. We assume that the
TG curve is composed of very small linear segments
of the length At, in which the reaction rate is constant.

Am = —Ae E/RT i Ay 5)

Assuming the reacting substance mass mg and tem-
perature T at the beginning of the TG curve (time
to = 0), further points of the curve can be calculated
from the following recurrence relation:

mi =m;_ — Ae Er/RTi mi_ (i —ti1) (6)

Eq. (6) is additive for several parallel processes. It can
be expanded for p various processes.

—E,/RT_, .M
m; = E Mpi-1 — E A,,e v/ ! mpfl.fl(t,- — l‘,;l)
p p

(7

2.1. Direct non-linear regression

The calculation of kinetic parameters from Eq. (7)
seems to be a simple problem. We have an experi-
mental curve and the equation enabling to calculate a
theoretical curve for the given E, A, and n parameters.
Searching for these parameters is a typical regression
problem. Eq. (7) is non-linear in relation to the
searched parameters. Therefore, it is necessary to
apply non-linear regression methods.

There are numerous computer programs for non-
linear regression calculations. Most of them, however,
are not applicable to searching for the kinetic para-
meters from Eq. (7). One of the reasons is the fact that
commonly available software requires a regression
function in an analytic form and does not allow to
use a recurrent relation. In addition, common optimi-
zation methods applied in non-linear regression fail
with Eq. (7).

Non-linear regression is based on repeating two
basic steps.
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1. Setting parameters values.
2. Evaluation of the set parameters values.

In the course of repeating these steps, the best values
of the parameters are stored and they are presented as
results after finishing the calculation.

There are a number of algorithms (optimization
methods) for setting parameters values enabling to
find the best values fast. To evaluate the set para-
meters, the residual sum of squares of deviations of
experimental and calculated regression function
values (RSS) is commonly used. It is defined for
Eq. (7) by the following relation:

p

RSS = "(me, —m,)? (8)

i=1

where me, are the specimen masses in individual
points of the experimental curve and m,, the values
calculated from Eq. (7) in the corresponding points.
The least RSS values are obtained for the best para-
meter estimates.

The results obtained by means of current optimi-
zation methods utilizing RSS optimization criterion
are not good. The calculation converges badly to
correct values and final results depend on initial
estimates of the kinetic parameters. These problems
are encountered even in calculations from purely
theoretical curves not burdened with experimental
noise.

The following procedure (Section 2.2) was pro-
posed after the optimization procedure analysis.

2.2. Kinetic parameters searching — step by step

The kinetic parameters E, A, and n are not generally
the only unknown parameters in Eq. (7). For its
utilization, it is necessary to know initial masses of
reacting substances for each particular process. In
some cases (if the specimen composition is known),
these masses are known, or they also have to be
searched for by means of regression calculations.

For p processes, we have to search for the set of
parameters Ej, A;, n; G =1,2,...,p) and mass frac-
tions wo; (j = 1,2,...,p — 1) that determine the por-
tion of individual reacting components.

The fundamentals of the presented method of
calculation of kinetic parameters are as follows.

1. The kinetic energies E; and reaction orders n; are
searched by gradual searching through the opted
range of values with the set accuracy.

2. The frequency factors A; and mass fractions w; are
searched separately for each combination of the E;
and n; values.

3. The reciprocal value of the residual sum of
squares 1/RSS is used as a criterion for the quality
assessment of the parameters. It reaches its
maximum for the best parameters.

The basic algorithm of the calculation is shown in
Fig. 1. At the beginning, a range and step for the
activation energy and reaction order searching have to
be opted. The option of these values depend on the
information available about the processes in question
and on the required calculation accuracy. The wider
the interval for searching and the less the steps are, the
longer the time of calculation is. It was proved con-
venient in our calculations to start with a wide interval
and a relatively high step (e.g. min £ = 20, max E =
300, step E =10, minn = 0, maxn = 2,stepn = 0.2).
Then more precise results may be obtained by
repeating the whole calculation procedure with a
narrower interval and smaller step for the E; and n;
searching.

Define range and step for E;
minE, maxE, stepE;

E} Define range and step for n,
minn;, maxn,, stepn;

For all combinations of £, and n;

a | calculate the best A, w; and 17/RSS
(Fig. 2)

b | if 7/RSS is the highest of all to this
moment then save combination of
actual parameters as

bestE;, bestn;, bestA;, bestw;

E Results:
bestE;, bestn;, bestA;, bestw;

Fig. 1. Scheme of the basic algorithm.
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m Set initial values and estimates
f=1 c=0.9
A=10°  w=1p

@ Calculate 1/RSS
Set bestA; = A;, bestw; = w;

Repeat while > 0.01

a | generate uniformly random number d
within the interval (-1, 1)

b | forz=1, 0, -1 create all combinations of
A; = bestA; x 107
w; = bestw; + zfd/10

¢ | calculate 7/RSS for all combinations

d | if one of the values of 7/RSS is the
highest of all to this moment then save
according values of A; and w; as
bestA;, bestw;

e | if any of the values of 7/RSS is NOT the
highest of all to this moment then
contract the factor f

f=fe

@ Results:
bestA;, bestw;

Fig. 2. Algorithm of A; and w; calculation.

The frequency factors and mass fractions for indi-
vidual combinations of E; and n; may be calculated by
means of the algorithm shown in Fig. 2. The procedure
is based on the commonly used method with a random
increment.

3. Experimental

The thermogravimetric experiments were per-
formed on the apparatus Netzsch STA 409 EP under
same experimental conditions: Al,O5 crucibles, with-
out a standard, the heating rate 10K minfl, the
dynamic atmosphere (dry air, 100 cm® min™'), the
sample mass 4.9-5.1 mg.

The used materials were graphite (Fluka, grain size
<0.1 mm) and soot Vulcan 3 (Cabot, fraction under
0.1 mm).

The published thermogravimetric data for the ther-
mal dehydroxylation of Mg(OH), [19] were used for
testing.

The integral methods by Coats and Redfern (CR)
[20], Horowitz and Metzger (HM) [21], and differ-
ential methods by Freeman and Carroll (FC) [22],
Vachuska and Voboril (VV) [23] were used for com-
parative calculations. The parts of the curves corre-
sponding to the range of conversion 0.05-0.95 were
taken for calculations. The reaction orders in integral
methods were determined by the method of trials and
errors. The calculated order corresponds to the best
linear dependence calculated applying the least
squares method. The calculated values of the activa-
tion energy were rounded off to 1 kJ mol ", the values
of the frequency factor and reaction order were
rounded off to two valid digits.

In the calculations applying the described method
of the direct non-linear regression, the whole TG
curves were taken and the least used difference was
1 kI mol™" for the activation energy and 0.1 for the
reaction order. The optimized frequency factor was
rounded off to two valid digits likewise in the com-
parative methods.

4. Results and discussion
4.1. Comparison with other methods

A comparison of the described calculation method
with other methods was done on the experimental
curves measured in our laboratory (oxidation of gra-
phite and soot), on the published data for the thermal
decomposition of magnesium hydroxide [19], and on
the curves generated according to Eq. (6) with various
parameters. The results of calculations are summar-
ized in Table 1.

The calculated kinetic parameters show a consider-
able accordance nearly for all the methods. The
method by Horowitz and Metzger is an exception
that gives, in comparison with the other methods,
considerably higher values of E and A, and in some
cases unreliable values of n. However, this fact is
known [7].
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Table 1

The values of E (kJ mol™ %), A (s™1), and n calculated by means of various methods®

Data Parameters DNR CR HM FC \AY

1 E 206 201 241 207 210
A 1.9 x 10® 1.3 x 107 1.0 x 10° - -
n 0.6 0.4 0.4 0.5 0.5

2 E 206 215 281 209 215
A 4.0 x 10° 1.2 x 10" 12 x 10" - -
n 0.9 0.9 1.5 0.9 1.0

3 E 212 214 233 211 200
A 1.5 x 10" 5.2 % 10" 1.5 x 10" - -
n 1.6 1.4 1.0 1.3 1.3

4 E 161 163 192 164 163
A 1.2 x 10® 8.3 x 107 6.3 x 10° - -
n 0.6 0.6 0.6 0.6 0.6

5 E 160 160 193 163 163
A 1.0 x 10® 5.6 x 107 7.4 x 10° - -
n 0.6 0.6 0.7 0.6 0.6

6 E 86 88 109 88 89
A 4.4 x 10* 95 x 10* 5.1 x 10° - -
n 1.2 1.2 1.3 1.2 12

7 E 86 86 112 87 88
A 4.4 x 10* 5.9 x 10* 1.2 x 107 - -
n 1.2 1.2 15 1.2 12

?Data: 1: graphite oxidation; 2: Vulcan 3 oxidation; 3: Mg(OH), decomposition [19] (E = 223 kJ mol™', A =14x10, n=1.6); 4
calculated (E = 163k mol™, A = 1.6 x 108 s™%, n = 0.65, p=10K min~!, Ar = 30 s); 5: calculated (same as 4, At = 6 s); 6: calculated
(E=87kImol™ ', A=54x10*s7!, n=1.23, p=10K min~!, Ar = 30s); 7: calculated (same as 6, At = 6's).

For data 3 taken from [19] (thermal decomposition
of magnesium hydroxide), the method of DNR gives a
little higher reaction order than the other methods. But
the value n = 1.6 is in accordance with the original
work. All the methods give for data 3, lower (however,
mutually identical) values of the activation energy
than the original paper. A probable reason of this fact
is a low accuracy of the graphical readings of experi-
mental points in [19].

The couples of the calculated curves 4-5 and 6-7
differ in the used time step At, it means in the density
of points on the curve. A variation of this parameter
had practically no influence on the calculated values
for any of the used methods. This fact appears to be
quite important for the described method of non-linear
regression, since the decrease of the frequency
of points enables a considerable acceleration of
calculations.

4.2. Influence of random errors of the mass
measuring on the calculated kinetic parameters

When assessing the influence of random errors of
the mass measuring on the calculated parameters, the
TG curves burdened by random errors were generated
according to Eq. (6). The calculated masses in indi-
vidual points were adjusted according to the relation

em;

100

mi(e) =m; + (2v — 1) (15)
where m;(e) is the mass burdened by an error, m; the
original mass calculated according to Eq. (6), e the error
expressed in percents of the initial sample mass, and v a
uniformly random number from the interval (0, 1).

The curves for e = 0.1, 0.5, 1, and 2% were gen-
erated. The results of the calculations are summarized
in Table 2.
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Table 2

The values of E (kJ mol™ %), A (s™1), and n calculated by various methods for the data burdened by random errors®

Error (%) Parameters DNR CR HM FC \'A%

+0.1 E 165 166 197 151 161
A 2.1 x 108 1.4 x 108 12 x 10" - -
n 0.7 0.6 0.6 0.4 0.6

+0.5 E 164 160 193 129 159
A 1.8 x 108 49 x 107 6.7 x 10° - -
n 0.7 0.5 0.6 0.1 0.6

+1 E 164 159 194 215 146
A 1.8 x 108 43 x 10 8.0 x 10° - -
n 0.7 0.5 0.6 1.2 0.5

+2 E 173 196 200 313 205
A 6.4 x 108 1.6 x 10'° 2.1 x 10" - -
n 0.8 1.1 0.6 2.8 0.8

 The basic curve: E = 163kImol '; A=1.6x103s™ ', n=0.65; f = 10 Kmin~'; At = 30s.

The used methods depend on the random error in a
different extent. The differential methods (FC, VV)
have less stability of solution in relation to the random
errors than the integral methods (CF, HM). The worst
results give the Freeman and Carrol method, as it was
expected. At the error +0.1%, the calculated values
differ considerably from the theoretical ones, and with
the increasing error of measurement the results
become unreal. The reason of these errors is the fact
that the calculation is performed from the difference of
two discrete experimental points. The method by
Vachuska and Voboril gives a little better results,
nevertheless, the difference between the calculated
and theoretical values is significant at the errors above
0.5%. The calculation according to Coats and Redfern
gives a good accordance at the error as high as 1%.
The method by Horowitz and Metzger has excellent
stability even at high errors. It can be said, irrespective
of a systematic shift of the parameters E and A towards
higher values, that this method is nearly independent
of the mass measurement errors. The proposed method
of DNR may be assessed in a similar way. The values
calculated by means of this method are in a very good
accordance with the theoretical ones, even at high
erTors.

4.3. Calculation of two processes

The curves generated according to Eq. (7) and/or
their combinations with the experimental curve, were

used in calculations of the kinetic parameters for two
partly overlapping processes.

Process 1 was only calculated for the parameters
E=163kImol ', A=16x10%s"", and n = 0.65.
Process 2 corresponds to the thermal oxidation of soot
Vulcan 3 and its parameters were determined above
(E=206kImol ',A=4.0x10°s"',n=0.9). The
TG curve for this process was either calculated or the
experimental data were used. Process 1 was combined
with process 2 for various mass proportions of reacting
substances. The shape of the combined TG curves
with different mass fractions is shown in Fig. 3.

The calculated kinetic parameters for individual
curves are summarized in Table 3.

The kinetic parameters determined by a simulta-
neous calculation applying the direct non-linear

50 1

-100

300 t/-C

Fig. 3. The TG curves for a couple of overlapping processes.
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Table 3
The calculated values of E (kJ mol™1), A (s™1), n, and mass fractions w (%) for the two processes
Data Parameters Process 1 Process 2
Process 2 (calculated) E 163 205
wy =25 A 1.6 x 108 3.5 x 10°
wy =175 n 0.7 0.9
w 25.1 74.9
Process 2 (calculated) E 158 208
wy =50 A 7.9 x 107 52 x 10°
wy =50 n 0.6 0.9
w 50.2 49.8
Process 2 (calculated) E 159 205
w =75 A 9.4 x 10’ 3.5 x 10°
wy =25 n 0.6 0.9
w 74.7 25.3
Process 2 (experimental) E 164 196
wy =25 A 1.9 x 108 1.1 x 10°
wy, =175 n 0.7 0.9
w 23.7 76.3
Process 2 (experimental) E 165 204
wi =50 A 2.0 x 108 3.2 x 10°
wy =50 n 0.7 0.9
w 50.2 49.8
Process 2 (experimental) E 165 205
wy =75 A 1.9 x 108 3.5 x 10°
wy =25 n 0.7 0.9
w 75.6 24.4

regression for the two processes present good accor-
dance with the theoretical values. The calculated mass
fractions of the reacting components present only
minimum deviations from the expected values.

5. Conclusions

The presented results show that a simultaneous
calculation of the activation energy, frequency factor,
and reaction order from a single TG curve by the direct
non-linear regression of the kinetic equation is pos-
sible. Though, the calculated values do not have a
clear physical meaning, they represent an objective
description of the thermogravimetric curve and char-
acterize the processes taking place.

The proposed method of calculation was applied for
determining the kinetic parameters of both the simu-
lated and experimental TG curves for a single process.
The results of the calculations were compared with the

values obtained by means of the methods by Coats and
Refern [20], Horowitz and Metzger [21], Freeman and
Carroll [22], and by Vachuska and Voboril [23]. It can
be concluded from this comparison that the results are
in a very good mutual accordance except for the
method by Horowitz and Metzger that gives system-
atically higher values of all the parameters.

The proposed method was also verified from the
standpoint of the dependence of the calculated para-
meters on random errors of the experimental data.
Respecting the results of the comparative methods, the
method of non-linear regression appears to be the best
from this point of view. It is characterized by good
stability of the solution even for high errors of the
experimental data.

The method of non-linear regression was utilized as
well for the determination of the kinetic parameters
of the two processes whose TG curves are partly
overlapping. The simulated TG curves as well as
the combined simulation 4 experiment curves were
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utilized for the calculation. The results showed that the
linearization elimination at the calculation enables to
determine both the kinetic parameters for overlapping
processes and the mass fractions of the reacting sub-
stances, which is not possible by means of the testing
methods [20-23].
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